Relatively Best Chebyshev Approximations to exp(t)

D. P. LAURIE

National Research Institute for Mathematical Sciences, CSIR, P.O. Box 395, Pretoria 0001, South Africa

Communicated by Lothar Collatz

Received September 27, 1976

Let $R_{m,n}^{(-h,h)}(t)$ be the best (m,n) rational approximation to $\exp(t)$ over the interval [-h,h] in the relative error norm, with largest relative error $\epsilon_{m,n}^{(-h,h)}$. In most of the following, the dependence on h is not used and we shall therefore omit the superscript.

Our main result is that $R_{m,n}^{(-h,h)}$ satisfies a symmetry property analogous to the Padé approximations to $\exp(t)$.

THEOREM. If $R_{m,n}$ is nondegenerate, then $R_{n,m}$ is nondegenerate and the following relation holds:

$$R_{n,m}(t) R_{m,n}(-t) = 1 - \epsilon_{m,n}^2$$
 (1)

Proof. The approximation in the relative error norm is a special case of Chebyshev approximation with a positive weight function, and if $R_{m,n}$ is nondegenerate, the following alternation property holds (Achieser [1]): there exist m+n+2 points $\{t_i\}_{i=0}^{m+n+1}$ such that $-h \leq t_0 < t_1 < t_2 < \cdots < t_{m+n+1} \leq h$ and $E(t_i) = (-1)^{i+k} \epsilon_{m,n}$, where k is 0 or 1 depending on the sign of $E(t_0)$ and E is the relative error function

$$E(t) \triangleq 1 - \exp(-t) R_{m,n}(t). \tag{2}$$

This property uniquely determines $R_{m,n}$.

We note that E' has at most m+n zeros in [-h, h], since E' is of the form $\exp(-t) Q(t)$, where Q is a rational function with a numerator of degree m+n. Therefore the m+n+2 alternating points must be precisely these m+n zeros $\{t_i\}_{i=1}^{m+n}$ together with $t_0=-h$ and $t_{m+n+1}=h$.

We now consider the (n, m) rational function $S(t) = (1 - \epsilon_{m,n}^2)/R_{m,n}(-t)$, and find the extrema of its relative error function, i.e., the set

$$\{t: (d/dt)(1 - \exp(-t) S(t)) = 0\}$$

$$= \{t: \exp(-t)(S(t) - S'(t)) = 0\}$$

$$= \{t: (1 - \epsilon_{m,n}^2)[1/R_{m,n}(-t) + R'_{m,n}(-t)/R_{m,n}^2(-t)] = 0\}$$

$$= \{t: R_{m,n}(-t) + R'_{m,n}(-t) = 0\}$$

$$= \{-t: R_{m,n}(t) - R'_{m,n}(t) = 0\}$$

$$= \{-t: (d/dt)(1 - \exp(-t) R_{m,n}(t)) = 0\}$$

$$= \{-t_i\}_{i=1}^{m+n}.$$

We now look at the value of the relative error function of S at the m+n+2 points $\{-t_i\}_{i=0}^{m+n+1}$. We have

$$1 - \exp(t_i) S(-t_i) = 1 - (1 - \epsilon_{m,n}^2) / [R_{m,n}(t_i) \exp(-t_i)]$$

$$= 1 - (1 - \epsilon_{m,n}^2) / [1 - (-1)^{i+k} \epsilon_{m,n}]$$

$$= 1 - (1 + (-1)^{i+k} \epsilon_{m,n})$$

$$= (-1)^{i+k+1} \epsilon_{m,n}.$$

Since the interval [-h, h] is symmetric around the origin, the points $\{-t_i\}_{i=0}^{m+n+1}$ are also in [-h, h]. Therefore S satisfies the alternation property, and must be equal to $R_{n,m}$.

Corollary 1.

$$\epsilon_{n,m} = \epsilon_{m,n}$$
.

COROLLARY 2. If m = n, the points $\{t_i\}_{i=0}^{2m+1}$ are symmetrically disposed around the origin, and there exists a polynomial P_m such that

$$R_{m,m}(t) = (1 - \epsilon_{m,m}^2)^{1/2} P_m(t) / P_m(-t).$$
 (3)

Proof. Let $R_{m,m}(t) = P_{m,m}(t)/Q_{m,m}(t)$. By the theorem,

$$P_{m,m}(-t) P_{m,m}(t)/[Q_{m,m}(-t) Q_{m,m}(t)] = 1 - \epsilon_{m,m}^2.$$
 (4)

Since $P_{m,m}(t)$ and $Q_{m,m}(t)$ have no common factors, there must be a constant c such that $P_{m,m}(t) = cQ_{m,m}(-t)$ and hence $P_{m,m}(-t) = cQ_{m,m}(t)$. By (4), $c^2 = 1 - \epsilon_{m,m}^2$, and by putting $P_m(t) = Q_{m,m}(-t)$, the corollary follows.

Remark. Once $R_{m,n}^{(-h,h)}$ is known, it is easy to find the relatively best (m, n) approximation $R_{m,n}^{(a,a+2h)}$ to $\exp(x)$ over an interval [a, a+2h] by

$$R_{m,n}^{(a,a+2h)}(t) = \exp(a+h) R_{m,n}^{(-h,h)}(t-a-h)$$

since

$$1 - \exp(-t) R_{m,n}^{(a,a+2h)}(t) = 1 - \exp(a+h-t) R_{m,n}^{(-h,h)}(t-a-h)$$
$$= 1 - \exp(-x) R_{m,n}^{(-h,h)}(x),$$

where x = t - a - h is in [-h, h]. This shifting property is shared by Padé approximations, but not by ordinary Chebyshev approximations.

REFERENCE

1. N. Achieser, "Theory of Approximation," Ungar, New York, 1956.