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Let R!;;,~,h)(t) be the best (m, n) rational approximation to exp(t) over the
interval [-h, h] in the relative error norm, with largest relative error E~~~,h).

In most of the following, the dependence on h is not used and we shall there
fore omit the superscript.

Our main result is that R!;;,~,h) satisfies a symmetry property analogous
to the Pade approximations to exp(t).

THEOREM. If Rm •n is nondegenerate, then R n •m is nondegenerate and the
following relation holds:

Rn,m(t) Rm.n(-t) = 1 2
- €m.n· (1)

Proof The approximation in the relative error norm is a special case of
Chebyshev approximation with a positive weight function, and if Rm,n is
nondegenerate, the following alternation property holds (Achieser [1]):
there exist m + n + 2 points {ti}~"on+l such that -h ~ to < t1 < t2 < ... <
tm+n+1 ~ hand E(ti) = (-1 )i+k Em.n , where k is 0 or 1 depending on the
sign of E(to) and E is the relative error function

E(t) [:" 1 - exp(-t) Rm.n(t). (2)

This property uniquely determines Rm •n •

We note that E' has at most m + n zeros in [-h, h], since E' is of the form
exp(-t) Q(t), where Q is a rational function with a numerator of degree
m + n. Therefore the m + n + 2 alternating points must be precisely
these m + n zeros {ti}7'~in together with to = -h and tm+n+1 = h.

We now consider the (n, m) rational function S(t) = (1 - E;',n)! Rm.i-t),
and find the extrema of its relative error function, i.e., the set
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APPROXIMATIONS TO exp(t)

{t: (d/dt)(l - exp(-t) Set)) = O}

= {t: exp(-t)(S(t) - S/(t)) = O}

= {t: (1 - €;'.n)[l/Rm.n(-t) + R~.n(-t)/R;..n(-t)] = O}

= {t: Rm.n(-t) + R:n.n(-t) = O}

= {-t: Rm.nCt) - R:n.n(t) = O}

= {-t: (d/dt)(1 - exp(-t) Rm.nCt)) = O}

= {-ti}7'=~n.
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We now look at the value ofthe relative error function ofS at the m + n + 2
points {-ti}7:~n+l. We have

1 - exp(ti) S(-ti) = 1 - (1 - €;'.n)/[Rm.n(ti) exp(-t;)]

= 1 - (1 - €;'.n)/[1 - (_1)iH €m n]

= 1 - (1 + (_l)i+k €m.n)

= (_1)i+k+1 €m.n·

Since the interval [-h, h] is symmetric around the ongm, the points
{-ti}7'~n+l are also in [-h, h]. Therefore S satisfies the alternation property,
and must be equal to Rn •m • I

COROLLARY 1.

E"n,rn == €m.n •

COROLLARY 2. If m = n, the points {ti}~=tl are symmetrically disposed
around the origin, and there exists a polynomial Pm such that

(3)

Proof Let Rm.m(t) = Pm.m(t)(Qm.m(t). By the theorem,

Pm.m(-t) Pm.m(t)/[Qm.m(-t) Qm.m(t)] = 1 - €;'.m' (4)

Since Pm.m(t) and Qm.m(t) have no common factors, there must be a constant c
such that Pm.m(t) = cQm.m(-t) and hence Pm.m(-t) = cQm.m(t). By (4),
c2 = 1 - €;',m, and by putting Pmet) = Qm.m(-t), the corollary follows. I

Remark. Once R!".-.~,h) is known, it is easy to find the relatively best (m, n)
approximation R~:~+2h) to exp(x) over an interval [a, a + 2h] by
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since
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1 - exp(-t) ~::+2lt)(t) = 1 - exp(a + h - t) R;;;:~·It)(t - a - h)

= 1 - exp(-x) R~~·lt)(x),

where x = t - a - h is in [-h, h]. This shifting property is shared by Pade
approximations, but not by ordinary Chebyshev approximations.
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